
Flexible Techniques for Differentiable Rendering with 3D Gaussians

Leonid Keselman Martial Hebert
Carnegie Mellon University

Pittsburgh, PA, USA
{lkeselma,hebert}@cs.cmu.edu

Abstract

Fast, reliable shape reconstruction is an essential ingre-
dient in many computer vision applications. Neural Ra-
diance Fields demonstrated that photorealistic novel view
synthesis is within reach, but was gated by performance re-
quirements for fast reconstruction of real scenes and ob-
jects. Several recent approaches have built on alternative
shape representations, in particular, 3D Gaussians. We
develop extensions to these renderers, such as integrating
differentiable optical flow, exporting watertight meshes and
rendering per-ray normals. Additionally, we show how two
of the recent methods are interoperable with each other.
These reconstructions are quick, robust, and easily per-
formed on GPU or CPU. Code is available at https:
//github.com/leonidk/fmb-plus.

1. Introduction
As computer vision systems are more widely deployed in

society, either on robots or via mixed reality headsets, users
will desire that reconstructions of their many regular every-
day objects. While classic techniques from multiview scene
reconstruction could be used [61], modern approaches strive
for more photorealistic scene generation, such as those cre-
ated by Neural Radiance Fields (NeRF) [48] and the large
array of follow-up work [64]. Of note, these NeRF ap-
proaches could be seen as differentiable renderers [39, 73],
where an underlying scene representation is optimized for
view synthesis. However, NeRF methods are demanding
in their computational requirements, even with speed-up
methods such as Instant-NGP [51].

Two recent papers explored similar approaches to fast
NeRF alternatives – Fuzzy Metaballs [34] in ECCV 2022
and 3D Gaussian Splatting in SIGGRAPH 2023 [33]. Both
approaches represent geometry using a set of classic prim-
itives, specifically 3D Gaussians [21, 56]. The former built
a differentiable raytracer for 3D Gaussians, connected it to
the metaball literature [4], developed a sort-free rendering
function, focused on fast CPU runtimes, used dozens of

(a) Fuzzy Metaballs [34] raytraced dozens of Gaussians, used
random initialization, and estimated geometry and pose.

(b) 3D Gaussian Splatting [33] splatted millions of Gaussians,
used SfM [61] initialization, and synthesized novel views.

Figure 1: Recent approaches in differentiable render-
ing use 3D Gaussians as an underlying representation..
These approaches enable fast reconstruction of 3D objects
and scenes.

Gaussians, and performed quantitative experiments for ob-
ject reconstruction and pose estimation. A year layer, the
latter designed a fast rasterizer with a custom CUDA ker-
nel for splatting [46, 54], used millions of Gaussians, and
focused their system on reconstructing entire scenes to ap-
proach NeRF levels of fidelity. We demonstrate connections
between and extensions to both methods.

1

https://github.com/leonidk/fmb-plus
https://github.com/leonidk/fmb-plus

This paper is focused on extending the Fuzzy Metaballs
renderer to make it simpler, more robust, and to add addi-
tional features. We show that these recent papers are in-
teroperable and render the same underlying representation.
Since most well-established rendering techniques are built
on triangle meshes, we demonstrate a reliable way to trans-
form 3D Gaussian representations into meshes.

We summarize our contributions as follows:

• Develop a simplified version of Fuzzy Metaballs [34]
for shape reconstruction from Gaussians (Section 3.2).

• Show how Fuzzy Metaballs [34] can be rendered with-
out hyperparameters (Section 3.3).

• Show how to get per-pixel, differentiable optical flow
and its benefits in reconstruction (Section 5).

• Demonstrate how to export meshes from shapes de-
fined by 3D Gaussians (Section 6).

• Show that existing 3D Gaussian rendering meth-
ods [33, 34] are interoperable (Section 7).

• Develop a loss-based approach to reparameterizing
Gaussians by splitting components (Section 8).

These approaches require no pretraining and can be op-
timized directly on the scene of interest without dataset
bias, making them applicable to robotics applications where
robots may be interacting with novel objects, and are lim-
ited by onboard compute.

2. Related Work
A comprehensive overview of related work can be found

in prior papers using 3D Gaussians, including Fuzzy Meta-
balls [34], 3D Gaussian Splatting [33] and VoGE [66].

Some early methods of building models from partial ob-
servations used generalized cylinders [2]. More commonly,
methods build on top of triangle meshes, point clouds and
surfels [57]. Differentiable renders have been built for these
representations, initially for meshes [30, 39, 40]. These in-
clude custom backends that allow for fast GPU-based re-
sults [36], and high-quality results [53]. Other works focus
on point clouds [26, 73]. Pulsar [37] uses spheres as its rep-
resentation, which are equivalent to isotropic 3D Gaussians.
Primitives-based rendering methods have benefits for both
for composition [74] and tracking [43].

The earliest work using 3D Gaussians in rendering came
from Blinn [4], originally called atoms, blobs or meta-
balls, and were the birth of implicit surfaces. Several meth-
ods these techniques [18, 23, 52, 63, 67, 68, 69]. Some
renderers used rays while others used splatting [1], and
some recent differentiable renders build screen space Gaus-
sians [50]. Others use Gaussians as a primary representation

in computer vision [9, 10, 11, 16, 17, 22, 44] or render them
via projection, search, or other techniques [25, 55, 62].

Gaussians can be seen as a fundamental building block
that only uses the 1st (µ) and 2nd (Σ) order moments [27].
Point clouds only use µ. Oriented point clouds add a co-
variance eigenvector [9], and Gaussian Mixtures [11] use
all the information. Connections in this space include error
metrics [15, 45] and physics simulations [49].

There is work on connecting NeRF-style differentiable
renderers to mesh representations. MobileNeRF [6] used
the rasterization pipeline of commodity hardware to per-
form rendering of NeRF-like objects. VMesh [19] con-
structed a hybrid representation of volume and mesh.
NeRFMeshing [58] learned a Signed Surface Approxima-
tion Network to distill NeRF representations into meshes.

3. Ray-Shape Intersections
Existing methods for intersecting 3D Gaussians and rays

typically take two forms. Methods taking inspiration from
NeRF family methods [33, 66] typically sort all intersec-
tions and use closer Gaussians to attenuate the contribu-
tions of further Gaussians. Fuzzy Metaballs [34] introduced
a heuristic technique for blending intersections which did
does not require sorting. Section 3.1 summarizes this tech-
nique, Section 3.2 presents a simplification, and Section 3.3
proposes a variation without hyperparameters. All three
correctly render the same shapes, so objects optimized by
one can be reproduced with the other.

3.1. Weighted Blending

In Fuzzy Metaballs [34], intersections between each ray
(v⃗) and each Gaussian are computed separately and then
combined with a weighted average. Each Gaussian is pa-
rameterized as mean (µ ∈ R3), inverse root precision
(Σ− 1

2) and a weight (λi ≥ 0) where the
∑

i λi = 1.
Multivariate Gaussians are defined as

P (x⃗) =
√
(2π)k|Σ|− 1

2 exp

(
−1

2
(x⃗− µ)TΣ−1(x⃗− µ)

)
,

(1)
and the unnormalized log distance for each Gaussian is

d(v⃗t) = −1

2

[
(vt− µ)TΣ−1(vt− µ)

]
+ log(λi), (2)

which we will refer to as di when referring to evaluating the
i-th Gaussian for a ray v⃗ (here we use the point of maximum

likelihood, ti =
µT
i Σ−1

i v

vTΣ−1
i v

, the linear approach [34]).
For each Gaussian, its intersection (ti) and distance (di)

are used to obtain weights (wi). The final intersection is
obtained as tf , similar to OIT [12, 47]:

tf =
1∑
i wi

∑
i

witi. (3)

Per-ray estimation of other properties can continue to use
Equation (3). For example, ti (distance from camera) can be
replaced with n⃗i (normal) or c⃗i (color) and the same blend-
ing functions can be reused. For more details about normal
computation, see Section 6. It is also helpful to think of the
unnormalized Gaussian density as:

δi = exp(di), (4)

The original Fuzzy Metaballs approach uses 5 hyperparam-
eters (β1, β2, β3, β4, β5) to compute the weights and the
transparency. There is also a shape scale (η) to account for
shapes of different scales and return identical results. The
following are the weight and α (quality/opacity) functions:

wi = exp

(
β1diσ

(
β3

η
ti

)
− β2

η
ti

)
, (5)

α = σ

(
β4

∑
i

δi + β5

)
. (6)

3.2. Two Parameter Model

In shape reconstruction from video, 3 of these hyper-
parameters are not necessary and we develop a simplified
two parameter model that works in reconstruction settings.

First, β3 was used to give some minor contribution to
intersections behind the camera. While this does make the
renderer more differentiable, it is not used in practice, so the
σ function can be removed, leaving us with

wi = exp

(
β1di −

β2

η
ti

)
. (7)

Since the original paper [34] focused on rendering full,
proper Gaussian Mixture Models (where

∑
i λi = 1), it

required a normalizing factor β4 to account for how much
opaque a GMM should be. In the case of reconstruction,
there is no need for strict GMMs, so learning β4 can be
the responsibilities of unnormalized λi. Additionally, the
GMM focus suggested a smooth step function (sigmoid) for
computing α, but shape reconstruction can simplify this to a
decaying exponential, letting us drop the intercept term β5.
This allows us to have a simple, perhaps familiar [48, 65],
expression for α:

α = 1− exp

(
−
∑
i

δi

)
. (8)

We use this simplified two parameter model in most of
our experiments. While we noticed some small differences
due to losing the global normalization condition, they were
minor and mostly in the space of pose estimation, which is
not the focus of our experiments here for shape estimation.

3.3. Zero Parameter Model

With the simplified design given above, and the NeRF-
style approaches in other 3D Gaussian papers [33, 66],
we also investigate an alpha compositing variant of Fuzzy
Metaball rendering that requires sorting all intersections
and then computing transmission. The transmissions can
be seen as weights and Equation (3) can be used to compute
depth estimates (as well as normal and color estimates):

wi = Ti (1− exp(−δi)) (9)

where Ti is the accumulated transmissions of earlier inter-
sections

Ti = exp

−
∑
j

δj1[tj < ti]

 (10)

These equations create a version of differentiable ren-
dering with metaballs that is hyperparameter-free, doesn’t
require splatting, and enables the same usage of weights for
depth, normal and color computation as prior work [34]. As
our experiments in Table 2 and Figure 7 show, this approach
is slower but performs nearly identically.

4. Shape Reconstruction
The input to the system is a video and a single masked

frame. COLMAP [61] produces poses, XMem [7] propa-
gates masks, Unimatch [70] produces flow, and 3D Gaus-
sians optimized to fit the data. The shape converges quickly
since we use a ray-based differentiable renderer and are able
to sample minibatches that includes pixels across all frames.

Our differentiable rendering code is based on Fuzzy
Metaballs [34], which is built in JAX [5] and allows for re-
constructions on both the CPU and GPU. With an Nvidia
GTX 1080, we can do memory for image sequences of
roughly 250 × 130, while our CPU experiments are typi-
cally closer to 125× 65. Both sets of experiments typically
converge in less than a minute on commodity hardware. We
use 40 Gaussians as in prior work, for ease of comparison.

Differentiable renders provide flexibility for many loss
functions in shape reconstruction. For our experiments, we
combine of cross-entropy loss (LM) for objects segmenta-
tion masks, and L1 losses for color and flow (Section 5),
weighted by the object mask. Estimated alpha is clipped to
[10−6, 1 − 10−6]. For α, color (c), and optical flow (f) we
use the following loss function:

LM = α · log(α̂) + (1− α) · log(1− α̂) (11)
LC = α · ||c− ĉ||1 (12)

LF = α · ||f − f̂ ||1 (13)
L = LM + λCLC + λFLF (14)

In practice, we use colors that have had gamma corrected
back to linear intensity, and use a sigmoid to map from an

Figure 2: Shape reconstruction using 40 3D Gaussians and converging in under one minute, with color. (See Section 4 for
details). All objects are reconstructed from videos in the CO3D [60] dataset.

unconstrained parameterization to [0, 1]. Flow is measured
in the scale of half the shorter image dimension. This lets us
set λC = 4.5 and λF = 210 for all of our experiments. We
used identical settings for all our experiments: initialization
is from a randomized small sphere of Gaussians, and we
use fixed parameters for learning rate, canonical rescaling,
batch size, and all other known parameters. Learning rates
are automatically decayed based on statistical criteria [34].

We use the Adam [35] optimizer and rescale all scenes to
a canonical size based on camera pose distances to balance
the optimization of means and precisions [34] that occurs
when using re-scaling optimizers. We randomly sample
minibatches of 50,000 rays from across the entire sequence,
which leads to extreme fast convergence, often getting a rea-
sonable shape in well under an epoch (Figure 7). We use the
per-Gaussian simple colors used in prior work [34] for sim-
plicity, but extensions to Spherical Harmonics are possible
for greater color fidelity per Gaussian [14, 33].

Examples of our reconstructions can be seen Figure 2.
Even though the optimization only takes minutes, operates
on reasonably low resolution images, with reasonably few
Gaussians, we can still see good results. Depth estimates are
able to capture small geometric details (notice the kickstand
and both mirrors on the motorcycle). Despite the initializa-
tion being a small, invisible sphere of Gaussians, the opti-
mization procedure is able to reconstruct shapes with rich
geometry (such as the bicycle and the plant). Lastly, the
color results look reasonably realistic. Although separate
Gaussians must be used to paint 2D flat textures onto sur-
faces, reasonable results are obtained for the toy truck and
the skateboard reconstructions. In the toy truck, grey side
and roof panel details appear in the reconstruction. In the
skateboard, the painted curve shape is also approximately
modeled in the reconstruction, as are both wheels.

We obtained similarly good results with both Section 3.1
and Section 3.3, but all results in Figure 2 use the faster, two
parameter model for optimization and the resulting visuals.

5. Reconstructing with Optical Flow

Many approaches to 3D reconstruction focus only on
reconstructing the independent images from the given se-
quence [33], including all the 3D Gaussian methods [33,
34, 66]. However, in practice, these image sequences are
often collected by cell phone videos [60] and have a strong
temporal prior. Inspired by work in reconstructing 4D
scenes [38, 71, 72], we leverage optical flow in producing
more precise 3D reconstructions of static objects.

Optical flow provides a hypothesis of surface correspon-
dence, which regularizes the shape reconstruction. Corre-
spondence can be essential in classic techniques for shape
estimation [29, 42]. Sparse particle video trackers extend
this, and obtain long-term video correspondences [20].

Optical flow is a useful signal since it is a local es-
timator, and is robust to the long-term lighting changes
that occur when typical users capture scenes under auto-
exposure [28]. This makes it perhaps a more appropriate
loss term than color models, which would be sensitive to
lighting changes. Additionally, color often means texture,
which implies high frequency texture details that can be
difficult to reconstruct [48], and perhaps efficient shape es-
timation can do without.

The benefits of flow can be from our experiments, qual-
itatively in Figure 4 and quantitatively in Table 1. One in-
teresting result is that even classic optical flow [13] pro-
vides helpful cues to the shape optimization, even though
it is very noisy (see Figure 4a). Even better, state-of-the-
art flow methods such as Unimatch [70] are extremely fast
(real-time on GPU hardware) and have learned good priors
even in texture-less areas. Using such learned flow maps
(Figure 4b) can help shape estimation greatly. After opti-
mization, predicted model flow (Figure 4d) is very similar
to the given flow estimate from the network that was used to
supervise it. Incorporating flow also produces significantly
smoother depth maps, as can be seen in Fig. 3.

(a) Without Flow (b) With Flow

Figure 3: Optical flow improves reconstruction. We show
the results of fitting a set of 3D Gaussians to a CO3D [60]
sequence. Without a flow loss term, colors are estimated
well but the shape is not. After adding flow, color fidelity is
sacrificed but shape estimation improves.

In our experiments, optical flow slightly hurts the color
fidelity of the reconstructed models, but provides much
more accurate shape reconstruction, as can be seen in Fig-
ure 3. After adding a flow loss term, this surrogate es-
timate of surface correspondence helps resolve concav-
ity/convexity ambiguity from the silhouette and color loss
terms. For example, the body of the teddy bear becomes
smooth and its arms become well defined.

With the ray-based differentiable rendering of 3D Gaus-
sians, it is reasonably easy to compute per-pixel optical
flow. It only requires taking the 3D coordinate obtained
from Equation (3), and transforming it with adjacent cam-
era poses and projecting back into camera coordinates.

In our implementation, we pass all camera poses into the
rendering function and represent the camera with a single
inverse focal length parameter (making the assumptions that
the images lack distortion, the projection is in the center of
the image, and that the pixels are square). After comput-
ing the depth image for a given frame, we transform the
point cloud (forwards and backwards) and project the trans-
formed coordinates into the image. The changes in coordi-
nates is the direct, per-ray optical flow estimate. Without
using another source to regularize the optical flow, we get
reasonable estimates but with some artifacts due to shape
uncertainty (as can be see in Figure 4c).

We include estimates for both forward flow (pose i to
pose i + 1) and backward flow (pose i to pose i − 1) from
our differentiable renderer, for each ray.

Depth
Error

Runtime
(seconds)

No Color or Flow 0.271 17
Color 0.262 15
Color & Classic Flow [13] 0.237 14
Color & Learned Flow [70] 0.155 15

Table 1: Optical flow helps reconstruction of CO3D se-
quences [60]. For details see Section 5.

(a) Gunnar [13] (b) Uni [70] (c) Without (d) With

Figure 4: Optical Flow Quality. (a) shows a classic optical
flow estimate. (b) shows a modern, learned optical flow
estimate. (c) and (d) show the estimated flow for the same
frame after fitting 3D Gaussian model; respectively without
adding a flow loss and after adding a flow loss term to fit the
estimate from (a). Using standard optical flow coloring [3].

6. Exporting Meshes
Many successful differentiable renderers realize that

fast, efficient, robust differentiable rendering often require
smooth, fuzzy and indefinite surface representations [48,
34, 33]. For optimizing shapes from videos, it is helpful
to have some degree of softness to aid gradient flow.

On the other hand, commercial rasterization pipelines in
most desktop and mobile GPUs typically operate on triangle
meshes [19, 6]. Additional, the field of shape processing of-
ten prefers not just definite surfaces in the form of meshes,
but watertight meshes [75, 24]. Differentiable mesh ren-
derers typically bridge this divide with an explicit spatial
smoothness term [39, 59].

Instead, 3D Gaussians, neural surfaces, and other simi-
lar methods are implicit surface methods, where the genus
of the object can change during optimization. Many exist-
ing works export meshes using marching cubes [41, 48, 34],
where a volumetric grid is evaluated and triangles are pro-
duced at edges crossing a particular level set threshold.
While fast and simple, this can produce non-watertight
meshes. Additionally, it can require searching over an ideal
threshold to find which level set of the implicit surface
matches the explicit surface best [34].

In this work, we leverage the surface definition used by
the underlying differentiable renderer, and then solve the
appropriate Poisson equation [31, 32]. In Poisson surface
reconstruction, oriented point sets (points with normals in-
dicating the local tangent plane of the surface) are used as
input to solve a Poisson equation:

∇ · ∇χ = ∇ · V⃗ . (15)

Solving these equations can be done via well-conditioned
sparse linear systems [31]. Each point in the oriented point
cloud provides an estimate of the local gradient of the indi-
cator function (which points are inside the surface of the ob-
ject). A nice property of Poisson Surface solvers is that their
solutions always produce watertight meshes, as they solve

Figure 5: Colored Mesh Exports reconstructed from CO3D sequences [60] with 40 3D Gaussians and exported to Blender .

for an indicator volume, which produces a surface that is a
R2 manifold folded in R3. This process can be done over a
basis function set of B-splines with compact support.

To produce an oriented point set, we simply go over all
of our training views and render the point cloud of the ob-
ject, to produce point locations p = (x, y, z). The orien-
tation of each point can be produced in two different ways
(shown in Section 6). The first, and most general, is to use
the rasterization locality by taking a horizontal (px) and a
vertical (py) screen-space neighbor for each point (p) and
taking their cross product:

n⃗ =
(p− px)× (p− py)

||(p− px)× (p− py)||
. (16)

This technique works for any differentiable renderer pro-
ducing images on a grid (hence rasterization), but produces
poor results on discontinuities.

An alternative approach for 3D Gaussians is to re-use
Equation (3) to blend all the local estimates of the normal
(n⃗i instead of ti) into a final estimate. The local estimate of
the normal is given by the derivative of Equation (1).

n⃗i =
Σ−1(vti − µi)

||Σ−1(vti − µi)||
. (17)

In general, the sign and scale of the normal is fixed: the
sign of the normal should face the camera created it, and the
||n⃗i|| = ||n⃗f || = 1. Both of these techniques can be seen in
Section 6. In practice, the blended definition is preferred as
it requires no neighbors.

For producing meshes from our renderer, we typically
perform the faster optimization with Section 3.1. and the
rendering equation from Section 3.3 can directly render that
representation with no changes. The alpha compositing def-
inition is preferred for mesh exporting as it is more view
consistent than the heuristic blending. Lastly, we can reject
any intersections that fail a quality threshold of a direct in-
tersection, maxi(wi) ≤ ϵ which is typically set to 0.9. The
Poisson surface reconstruction produces a surface interpo-
lation, and so the sparsity of point samples is not a prob-
lem. Additionally, we can export a colored, oriented point
cloud, where the color is either the reconstructed color or
the color of the images themselves at those points (see Fig-
ure 5). We obtained object reconstructions by solving Equa-
tion (15) with Dirichlet boundary constraints [32].

(a) Ficus via Weighted Blending (Section 3.1)

(b) Ficus via Alpha Compositing (Section 3.3)

Figure 6: 3D Gaussians are Fuzzy Metaballs Recon-
structed ficus from Gaussian Splatting [33], rendered with
Fuzzy Metaballs [34]. Shown are opacity, depth & normals.

(a) Optimization via Weighted Blending (Section 3.1)

(b) Optimization via Alpha Compositing (Section 3.3)

Figure 7: Both forms of rendering behave similarly.
Shown are 1%, 4%, 7%, 12%, 16% and 20% of an epoch.

Blended Neighbors Reference

Figure 8: Visualization of Normals for 3D Gaussians.

Figure 9: Visualization of Mesh Export This ficus shape was reconstructed using the Gaussian Splatting [33] code but
rendered as an oriented point cloud with Fuzzy Metaballs [34] and reconstructed with a Poisson Solver [31, 32]. Left to right
are Poisson tree depths of 6 through 10. While deeper tree depths produce more detailed reconstruction, noise and artifacts
are also amplified. The mesh export is based on an oriented point cloud exported from 100 images of size 80 × 60. It is
interesting to see that precise details like the various steps become visible, even when the forward passes were low resolution
(see Figure 6 for a visual example of the coarseness generated by the renderer).

7. Interoperability

We describe how Fuzzy Metaballs [34] and 3D Gaussian
Splatting [33] share a similar underlying shape representa-
tion. We demonstrate this by showing results in Figures 6
and 9 where the initial shape reconstruction was performed
using the 3DGS [33], and then directly converted and ren-
dered Section 3.3 and exported using Section 6.

Our experiments in Figure 7 and Section 6 show that
Sections 3.1 and 3.3 use mutually compatible definitions of
shape representation. However, the Gaussian Splatting [33]
work uses an entirely different code base, in a different
framework, optimizing scenes instead of objects, with no
object masks, with a custom CUDA kernel, and preferring
α to δ estimates. However, since both are using 3D Gaus-
sians, we can render one with the other.

We convert the Gaussian Splatting method to be com-
patible with our approach with only a few steps. Means
are used directly, each Σ are converted to Σ− 1

2 , and the
α for each Gaussian is replaced. For simplicity, we ig-
nore αi < 0.5 and set λi = log(80) for the remaining 3D
Gaussians, which we found works reasonably well1. About
90% of Gaussians had insufficient α, creating a ten times
speedup in our experiments. For weighted blending experi-
ments, we reused the settings of β1 = 21.4 and β2 = 3.14
from our prior experiments.

As can be seen in Figure 6, both techniques are able to
capture the fine stem and leaf structures in the reconstructed
ficus plant. The weighted blending technique demonstrates
smoother normals, but the mesh export uses the alpha com-

1Inverse sigmoid conversion of λ = −C log(1 − α) maybe also be
reasonable with appropriate C, which we did not search for.

posting method and reasonable meshes can be obtained.
In Figure 9 we show Poisson surface reconstructions of

the ficus, where the oriented point cloud used for solving
the equation was generated by our renderer, but the original
reconstruction was made with 3D Gaussian splatting. We
show reconstructions at different tree depths, showing an
increase in details, and an increase in noise, at finer scales.
The solver can recover reasonably fine details considering
considering the low resolution of the oriented point clouds.

This extends the utility of the 3D Gaussian Splatting ap-
proach to be rendered with our fast methods that have vi-
able JAX [5] CPU and GPU backends. Our approach en-
ables per-ray depth computation, normals and mesh export-
ing (Section 6). The ficus data was provided without color,
so we show colored exports in Figure 5. Mesh exports pro-
vides an interconnect with most 3D creation tools.

CPU GPU

Weighted Blending
(Section 3.1) 4.94 µs 226.6 ns
Alpha Compositing
(Section 3.3) 12.7 µs 377.6 ns

Table 2: Runtime per ray, for an entire iteration with a
i5-7267U CPU and a GTX 1080 GPU. This was done with
a 40 Gaussian model and these times include memory trans-
fer times and forwards and backwards passes. Alpha com-
positing drops the need for hyper-parameters, in exchange
for 200% slower runtimes on CPU and 50% slower runtimes
on GPU. This creates a trade-off between performance and
simplicity.

N = 40 N = 45 N = 51

Figure 10: Re-parameterized 3D Gaussians to minimize
apparent loss. N is the number of mixtures used. The ap-
pearance of additional details can be seen.

8. Splitting Gaussians
While the 3D Gaussian Splatting [33] explores some

heuristic techniques for merging and splitting of Gaussians,
here we develop an alternative, deterministic approach to
modifying the number of Gaussians in the reconstruction.

We split 3D Gaussians after our initial model has con-
verged according to statistical criteria [34]. And we then
repeat the optimization process. Two steps of this are shown
in Figure 10. The splitting and removal process is based on
removing Gaussians that contribute minimally to the recon-
struction and splitting Gaussians that are given too much
reconstruction responsibility based on the chosen loss.

To compute the set of Gaussians that minimally con-
tribute, we compute the means and standard deviations of
the weights assigned to each Gaussian µλ and σλ and re-
move Gaussians that satisfy

λi ≤ µλ − zλσλ, (18)

where zλ is a z-score typically set to 2.
To compute the splitting criteria, we take a random batch

of rays (typically about 5% of the dataset) and compute the
per-ray loss (e.g. Eq. (14) but any reconstruction loss is
viable). Each ray also has an associated set of computed
weights wi (Eqs. (7) and (9)). Over this batch of M rays,
we estimate the average loss associated with each Gaussian
as l̄i = 1

M

∑M
j = Lj · wi. We compute the means and

standard deviations of these losses as µl̄ and σl̄ and split
Gaussians that satisfy

l̄i ≥ µl̄ + zl̄σl̄, (19)

where zl̄ is a z-score typically set to 1.
Gaussians are split by forming two Gaussians by using

the properties of the half-normal distribution [8]. The two
new means are generated by shifting the initial mean (µi) in
opposite directions by the direction of the dominant eigen-
vector (v⃗1), and by the appropriate factor of the dominant
eigenvalue (σ1) of the covariance matrix (Σi):

µa,b = µ± σ1v⃗1

√
2

π
. (20)

Both new Gaussians are given identical covariance matri-
ces, reconstructed from the initial eigenvalues and eigen-
vectors but with a scaled dominant eigenvalue:

σ1a,b
= σ1

√
1− 2

π
. (21)

The scaling factors
√

2
π ≈ 0.8 and

√
1− 2

π ≈ 0.6 are
based on the properties of the half-normal distribution.

We replicate the initial weights (λ) and colors (ci) for
the new Gaussians, with noise (ϵc = ϵw = 0.1) in their
unconstrained parameterization space to avoid issues with
coupled gradients during further optimization:

log(λa,b) = log(λ) +N (0, ϵw), (22)

σ−1(ca,b) = σ−1(c) +N (0, ϵc). (23)

This approach to splitting is deterministic and allows for
increasing detail in an iterative way, as shown in Fig. 10.

9. Discussion
With the increased deployment of vision systems in ev-

eryday environments, there is a need for flexible, efficient,
and easily computed shape reconstructions. The recent de-
velopments in photorealistic differentiable rendering make
close the dream of virtual systems accurately capturing ev-
eryday objects in the virtual world. 3D Gaussians, or meta-
balls, are a simple and powerful representation for shapes
that enables easy reconstruction, as has been shown by prior
work [33, 34, 66]. These techniques interconnect these ap-
proaches and provide them additional flexibility.

The equivalence of weighted blending and alpha com-
posting approaches provides a wider array of options —
one being significantly faster and the other lacking hyper-
parameters. The computation of per-ray blended normals
allows for reliable mesh exporting, connecting to other 3D
techniques and methods, without the need to pick thresholds
for marching cubes [41], and producing watertight meshes
via Poisson reconstruction [32]. We show a more determin-
istic, grounded approach to performing reparameterization
of Gaussians. Lastly, optical flow as a regularizer and prior
for surface correspondences can easily and reliably improve
the quality of shape reconstructions.

10. Conclusion
We have extended existing approaches for differentiable

rendering of 3D Gaussians for speed, simplicity and flexi-
bility. This expanded flexibility should allow these repre-
sentations to be used in more places, for more applications,
and potentially across a wider array of computational plat-
forms than before.

References
[1] Bart Adams, Toon Lenaert, and Philip Dutré. Particle splat-

ting: Interactive rendering of particle-based simulation data.
Report CW 453, KU Leuven, July 2006. 2

[2] Gerald Jacob Agin. Representation and Description of
Curved Objects. PhD thesis, Stanford University, CA, USA,
1972. 2

[3] Simon Baker, Stefan Roth, Daniel Scharstein, Michael J.
Black, J.P. Lewis, and Richard Szeliski. A database and eval-
uation methodology for optical flow. In International Con-
ference on Computer Vision, pages 1–8, 2007. 5

[4] James F. Blinn. A generalization of algebraic surface draw-
ing. ACM Trans. Graph., 1(3):235–256, July 1982. 1, 2

[5] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 3, 7

[6] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In The Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 2, 5

[7] Ho Kei Cheng and Alexander G. Schwing. XMem: Long-
term video object segmentation with an atkinson-shiffrin
memory model. In ECCV, 2022. 3

[8] Cuthbert Daniel. Use of half-normal plots in interpreting
factorial two-level experiments. Technometrics, 1(4):311–
341, 1959. 8

[9] Ben Eckart, Kihwan Kim, and Jan Kautz. Hgmr: Hierarchi-
cal gaussian mixtures for adaptive 3d registration. In ECCV
2018, pages 730–746, 2018. 2

[10] Ben Eckart, Kihwan Kim, Alejandro Troccoli, Alonzo Kelly,
and Jan Kautz. MLMD: Maximum Likelihood Mixture De-
coupling for Fast and Accurate Point Cloud Registration. In
3DV, pages 241–249, 2015. 2

[11] Ben Eckart, Kihwan Kim, Alejandro Troccoli, Alonzo Kelly,
and Jan Kautz. Accelerated Generative Models for 3D Point
Cloud Data. In CVPR, pages 5497–5505, 2016. 2

[12] Eric Enderton, Erik Sintorn, Peter Shirley, and David Lue-
bke. Stochastic transparency. In I3D ’10: Proceedings of
the 2010 symposium on Interactive 3D graphics and games,
pages 157–164, New York, NY, USA, 2010. 2

[13] Gunnar Farnebäck. Two-frame motion estimation based on
polynomial expansion. In Josef Bigun and Tomas Gustavs-
son, editors, Image Analysis, pages 363–370, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg. 4, 5

[14] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 4

[15] Michael Garland and Paul S Heckbert. Surface simplification
using quadric error metrics. In SIGGRAPH, pages 209–216,
1997. 2

[16] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape, 2020. 2

[17] Kshitij Goel, Nathan Michael, and Wennie Tabib. Prob-
abilistic point cloud modeling via self-organizing gaussian
mixture models. IEEE Robotics and Automation Letters,
8(5):2526–2533, 2023. 2

[18] Olivier Gourmel, Anthony Pajot, Mathias Paulin, Loic
Barthe, and Pierre Poulin. Fitted BVH for Fast Raytracing
of Metaballs. Computer Graphics Forum, 3:7 – 288, 2010. 2

[19] Yuan-Chen Guo, Yan-Pei Cao, Chen Wang, Yu He, Ying
Shan, Xiaohu Qie, and Song-Hai Zhang. Vmesh: Hy-
brid volume-mesh representation for efficient view synthesis,
2023. 2, 5

[20] Adam W. Harley, Zhaoyuan Fang, and Katerina Fragkiadaki.
Particle video revisited: Tracking through occlusions using
point trajectories. In ECCV, 2022. 4

[21] Paul S. Heckbert. Fun with gaussians. SIGGRAPH ’86 Ad-
vanced Image Processing seminar notes, 1986. 1

[22] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-
Or. Pointgmm: a neural gmm network for point clouds.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020. 2

[23] Robert Horvath. Image-space metaballs using deep learning.
Master’s thesis, Faculty of Informatics, TU Wien, July 2019.
2

[24] Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Junxiong
Cai, Jiahui Huang, Tai-Jiang Mu, and Ralph R. Martin.
Subdivision-based mesh convolution networks. ACM Trans.
Graph., 41(3):25:1–25:16, 2022. 5

[25] H. Huang, H. Ye, Y. Sun, and M. Liu. Gmmloc: Structure
consistent visual localization with gaussian mixture mod-
els. IEEE Robotics and Automation Letters, 5(4):5043–5050,
2020. 2

[26] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds,
2018. 2

[27] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. A new
method for the nonlinear transformation of means and co-
variances in filters and estimators. IEEE Transactions on
Automatic Control, 45(3):477–482, 2000. 2

[28] Kim Jun-Seong, Kim Yu-Ji, Moon Ye-Bin, and Tae-Hyun
Oh. Hdr-plenoxels: Self-calibrating high dynamic range ra-
diance fields. In ECCV, 2022. 4

[29] Takeo Kanade, Peter Rander, and P.J. Narayanan. Virtualized
reality: constructing virtual worlds from real scenes. IEEE
MultiMedia, 4(1):34–47, 1997. 4

[30] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer, 2017. 2

[31] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson Surface Reconstruction. In Alla Sheffer and Kon-
rad Polthier, editors, Symposium on Geometry Processing.
The Eurographics Association, 2006. 5, 7

[32] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (ToG),
32(3):1–13, 2013. 5, 6, 7, 8

[33] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(ToG), 42(4), July 2023. 1, 2, 3, 4, 5, 6, 7, 8

[34] Leonid Keselman and Martial Hebert. Approximate differ-
entiable rendering with algebraic surfaces. In European Con-
ference on Computer Vision (ECCV), Oct 2022. 1, 2, 3, 4, 5,
6, 7, 8

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR (Poster), 2015. 4

[36] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for
high-performance differentiable rendering. ACM Transac-
tions on Graphics, 39(6), 2020. 2

[37] Christoph Lassner and Michael Zollhöfer. Pulsar: Efficient
sphere-based neural rendering. arXiv:2004.07484, 2020. 2

[38] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 4

[39] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), October 2019. 1, 2, 5

[40] Matthew M. Loper and Michael J. Black. Opendr: An ap-
proximate differentiable renderer. In David Fleet, Tomas
Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, ECCV,
pages 154–169, Cham, 2014. 2

[41] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 5, 8

[42] David G. Lowe and Thomas O. Binford. Interpretation Of
Geometric Structure From Image Boundaries. In James J.
Pearson, editor, Techniques and Applications of Image Un-
derstanding, volume 0281, pages 224 – 231. International
Society for Optics and Photonics, SPIE, 1981. 4

[43] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. 2023. 2

[44] Martin Magnusson. The three-dimensional normal-
distributions transform: an efficient representation for reg-
istration, surface analysis, and loop detection. PhD thesis,
Örebro universitet, 2009. 2

[45] Prasanta Chandra Mahalanobis. On the generalized distance
in statistics. Proceedings of the National Institute of Sciences
(Calcutta), pages 49–55, 1936. 2

[46] Petr Man. Generating and real-time rendering of clouds.
Central European seminar on computer graphics, 2006. 1

[47] Morgan McGuire and Louis Bavoil. Weighted blended order-
independent transparency. Journal of Computer Graphics
Techniques (JCGT), 2(2):122–141, December 2013. 2

[48] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision – ECCV 2020,
pages 405–421, Cham, 2020. Springer International Publish-
ing. 1, 3, 4, 5

[49] Brian Mirtich. Fast and accurate computation of polyhedral
mass properties. JGT, 1(2):31–50, 1996. 2

[50] Jan U. Müller, Michael Weinmann, and Reinhard Klein. Un-
biased gradient estimation for differentiable surface splatting
via poisson sampling. In European Conference on Computer
Vision (ECCV), 2022. 2

[51] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 1

[52] Shigeru Muraki. Volumetric shape description of range data
using “blobby model”. In Proceedings of the 18th Annual
Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’91, page 227–235, New York, NY,
USA, 1991. Association for Computing Machinery. 2

[53] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. ACM Trans. Graph., 38(6), nov 2019. 2

[54] Manjushree Nulkar and Klaus Mueller. Splatting with shad-
ows. In Klaus Mueller and Arie E. Kaufman, editors, Vol-
ume Graphics 2001, pages 35–49, Vienna, 2001. Springer
Vienna. 1

[55] C. O’Meadhra, W. Tabib, and N. Michael. Variable res-
olution occupancy mapping using gaussian mixture mod-
els. IEEE Robotics and Automation Letters, 4(2):2015–2022,
2019. 2

[56] Karl Pearson. Contributions to the mathematical theory of
evolution. Philosophical Transactions of the Royal Society
of London. A, 185:71–110, 1894. 1

[57] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’00,
page 335–342, USA, 2000. 2

[58] Marie-Julie Rakotosaona, Fabian Manhardt, Diego Martin
Arroyo, Michael Niemeyer, Abhijit Kundu, and Federico
Tombari. Nerfmeshing: Distilling neural radiance fields into
geometrically-accurate 3d meshes, 2023. 2

[59] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 5

[60] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3d: Large-scale learning and evaluation of
real-life 3d category reconstruction. In International Con-
ference on Computer Vision, 2021. 4, 5, 6

[61] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 1, 3

[62] Kumar Shaurya Shankar and Nathan Michael. Mrfmap: On-
line probabilistic 3d mapping using forward ray sensor mod-
els. In Robotics: Science and Systems, 2020. 2

[63] László Szécsi and Dávid Illés. Real-time metaball ray cast-
ing with fragment lists. In Eurographics, 2012. 2

[64] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, Abhik Ahuja, David Mcallister,

Justin Kerr, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In Special
Interest Group on Computer Graphics and Interactive Tech-
niques Conference Conference Proceedings. ACM, 2023. 1

[65] Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. A non-
exponential transmittance model for volumetric scene repre-
sentations. ACM Trans. Graph., 40(4), jul 2021. 3

[66] Angtian Wang, Peng Wang, Jian Sun, Adam Kortylewski,
and Alan Yuille. VoGE: A differentiable volume renderer
using gaussian ellipsoids for analysis-by-synthesis. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 2, 3, 4, 8

[67] Lee Westover. Footprint evaluation for volume rendering.
SIGGRAPH Comput. Graph., 24(4):367–376, sep 1990. 2

[68] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data
structure forsoft objects. The Visual Computer, 2(4):227–
234, Aug 1986. 2

[69] Geoff Wyvill and Andrew Trotman. Ray-tracing soft objects.
In Tat-Seng Chua and Tosiyasu L. Kunii, editors, CG Inter-
national, pages 469–476, Tokyo, 1990. Springer Japan. 2

[70] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi,
Fisher Yu, Dacheng Tao, and Andreas Geiger. Unifying flow,
stereo and depth estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023. 3, 4, 5

[71] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Huiwen Chang, Deva Ramanan, William T
Freeman, and Ce Liu. Lasr: Learning articulated shape re-
construction from a monocular video. In CVPR, 2021. 4

[72] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Ce Liu, and Deva Ramanan. Viser: Video-
specific surface embeddings for articulated 3d shape recon-
struction. In NeurIPS, 2021. 4

[73] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli,
and Olga Sorkine-Hornung. Differentiable surface splatting
for point-based geometry processing. ACM Transactions on
Graphics, 38(6):1–14, Nov 2019. 1, 2

[74] Xiaoshuai Zhang, Abhijit Kundu, Thomas Funkhouser,
Leonidas Guibas, Hao Su, and Kyle Genova. Nerflets: Local
radiance fields for efficient structure-aware 3d scene repre-
sentation from 2d supervision. CVPR, 2023. 2

[75] Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of
10, 000 3d-printing models. CoRR, abs/1605.04797, 2016. 5

